Indian Statistical Institute II Semestral Examination 2008-2009 M.Math. II year Partial Deferential Equations

Date:00-00-2009 Duration: 3 Hours Max Marks you can get is 60

- 1. Let G be any open subset of \mathbb{R}^n , $m = 1, 2, 3, ..., 1 \le p < \infty$. Show that $C^{\infty}(G) \cap W^{m,p}(G)$ is dense in $W^{m,p}(G)$. [6]
- 2. Let H be a Hilbert space over the field F (of course F = R or F = C). Let $a : H \times H \longrightarrow F$ be continuous, linear in the first variable and conjugate linear in the second variable. Assume that there exists a constant k > o such that

$$a(u, u) \ge k \parallel u \parallel^2$$

for all u in H. Let $b: H \longrightarrow F$ be linear continuous map. Show that there exists a unique x_o in H such that $a(u, x_0) = b(u)$ for all u in H.

- $\left[5\right]$
- 3. Prove Poincare inequality for the bounded open set $(a_1, b_1) \times (a_2, b_2)$ of R^2 . [3]
- 4. Define $P(x,y) = \frac{1-x^2}{|x-y|^n}$ for |x| < 1 = |y|, $x, y \in \mathbb{R}^n$. Show that $\triangle_x P(x,y) = 0.$ [3]
- 5. Let Ω be any bounded open subset of \mathbb{R}^n with smooth boundary $\partial \Omega$. Prove Greens representation theorem:

Let
$$u \varepsilon C^2(\mathbb{R}^n)$$
. Then for $y \varepsilon \Omega$, $u(y)$
= $\int_{\partial \Omega} d \sigma(x) \left\{ u(x) \frac{\partial \Gamma}{\partial \vartheta_x}(x,y) - \Gamma(x,y) \frac{\partial u}{\partial \vartheta}(x) \right\}$
+ $\int_{\Omega} dx \Gamma(x,y) (\Delta u)(x)$

Here σ is the surface area measure of $\partial\Omega$, ϑ is the unit outer normal for $\partial\Omega$. \lceil is given by the formula $\lceil (x,y) = \frac{1}{2\pi} \log | x - y |$ for x, y in $R^2 \lceil (x,y) = \frac{1}{(2-n)W_n} | x - y |^{2-n}$ for $x, y \in R^n$ n = 3, 4, ...

You can assume that \lceil is a fundamental solution for the Laplacian \triangle . [10]

6. a) Let $f : R \times R \longrightarrow R$ be any C^2 function, $f = f(x_1, x_2)$. Define $g : R \longrightarrow R$ by $g(t) = \int_o^t ds \ f(t - s, s)$. Then show that $g^1(t) = f(0, t) + \int_o^t ds \ \frac{\partial f}{\partial x_1}(t - s, s)$. [2]

b) Prove Duhamels principle. Let $W : \mathbb{R}^n \times \mathbb{R} \longrightarrow \mathbb{R}$ be any C^2 function, W = W(x,t), x in \mathbb{R}^n , t in \mathbb{R} . For each s > o, let v(x,t,s) be a solution of

 $\frac{\partial^2}{\partial t^2} v(x,t,s) = \Delta_x v(x,t,s)$ v(x,o,s) = 0 $\frac{\partial v}{\partial t}(x,0,s) = W(x,s)$

Here $x \in \mathbb{R}^n, t \in \mathbb{R}$. Define $u : \mathbb{R}^n \times \mathbb{R} \longrightarrow \mathbb{R}$. by $u(x,t) = \int_0^t \mathrm{ds} \ v(x,t-s,s)$ for $t \ge 0$. Then show that u satisfies $u_{tt} - \triangle_x u = W$ on $\mathbb{R}^n \times (0,\infty), \ u(x,0) = 0 = u_t(x,0).$ [4]

7. Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a \mathbb{C}^{∞} function. Define the spherical mean for f by

$$M_f(x,r) = \frac{1}{W_n} \int_{|y|=1}^{\infty} f(x+ry) d\sigma(y).$$

where d $\sigma(y)$ is the surface measure on $S^{n-1} = \{y \in \mathbb{R}^n : |y| = 1\}$ normalized so that $\sigma(S^{n-1}) = W_n$. Prove the Darboux equation.

$$\left\{\frac{\partial^2}{\partial r^2} + \frac{n-1}{r}\frac{\partial}{\partial r}\right\} M_f(x,r) = \Delta_x M_f(x,r) = M_{\triangle f}(x,r).$$
[8]

- 8. Let $f \in \mathbf{S}[R^d]$. For all $u \in \mathbf{S}[R^d]$. Show that $|| f u ||_{H^s} \leq C(s, f) || u ||_{H^s}$ where C(s, f) is a constant depending on f. [5]
- 9. Let p be a homogeneous elliptic polynomial of degree N. Define

 $b(y) = \frac{|y|^N}{1+|y|^N} \cdot \frac{1}{p(y)} \text{ for } y \neq 0. \text{ Define } B \text{ by } (Bu)(\xi) = b(\xi)\hat{u}(\xi). \text{ Show that } \|Bu\|_{H^s} \leq C \|u\|_{H^s+N} \text{ where } C \text{ is a constant independent of } u$ [3]

10. Define $K(t, x) = \chi_{(0,\infty)}(t)t^{-\frac{n}{2}}exp\left[-\left(\frac{x^2}{4t}\right)\right]$ Show that λK is a fundamental solution for $\frac{\partial}{\partial t}\Delta_x$ for a suitable constant λ . [15]